
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2014

Using the Web 1T 5-Gram Database for Attribute Selection in Using the Web 1T 5-Gram Database for Attribute Selection in

Formal Concept Analysis to Correct Overstemmed Clusters Formal Concept Analysis to Correct Overstemmed Clusters

Guymon Hall
University of Nevada, Las Vegas, guymon.hall@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons, and the Library and Information Science Commons

Repository Citation Repository Citation
Hall, Guymon, "Using the Web 1T 5-Gram Database for Attribute Selection in Formal Concept Analysis to
Correct Overstemmed Clusters" (2014). UNLV Theses, Dissertations, Professional Papers, and Capstones.
2089.
https://digitalscholarship.unlv.edu/thesesdissertations/2089

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2089?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

USING THE WEB 1T 5-GRAM DATABASE FOR ATTRIBUTE SELECTION

IN FORMAL CONCEPT ANALYSIS TO CORRECT

OVERSTEMMED CLUSTERS

by

Guymon R. Hall

Bachelor of Science (B.Sc.)

University of Arkansas, Fayetteville

2001

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science – Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2014

www.manaraa.com

c© Guymon R. Hall, 2014

All Rights Reserved

www.manaraa.com

The Graduate College

We recommend the dissertation prepared under our supervision by

Guymon R. Hall

entitled

Using the Web 1T 5-Gram Database for Attribute Selection
in Formal Concept Analysis to Correct Overstemmed Clusters

be accepted in partial fulfillment of the requirements for the degree of

Master of Science – Computer Science
Department of Computer Science

Dr. Kazem Taghva, Ph.D., Committee Chair

Dr. Ajoy Datta, Ph.D., Committee Member

Dr. Matt Pedersen, Ph.D., Committee Member

Dr. Emma Regentova, Ph.D., Graduate College Representative

Kathryn Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College

May 2014

ii

www.manaraa.com

Abstract

Information retrieval is the process of finding information from an unstructured collection of

data. The process of information retrieval involves building an index, commonly called an inverted

file. As part of the inverted file, information retrieval algorithms often stem words to a common

root. Stemming involves reducing a document term to its root. There are many ways to stem a

word: affix removal and successor variety are two common categories of stemmers. The Porter

Stemming Algorithm is a suffix removal stemmer that operates as a rule-based process on English

words. We can think of stemming as a way to cluster related words together according to one

common stem. However, sometimes Porter includes words in a cluster that are un-related. This

experiment attempts to correct these stemming errors through the use of Formal Concept Analysis

(FCA). FCA is the process of formulating formal concepts from a given formal context. A formal

context consists of a set of objects, G, a set of attributes, M, and a binary relation I that indicates

the attributes possessed by each object. A formal concept is formed by computing the closure

of a subset of objects and attributes. Attribute selection is of critical importance in FCA; using

the Cranfield document collection, this experiment attempted to view attributes as a function of

word-relatedness and crafted a comparison measure between each word in the stemmed cluster

using the Google Web 1T 5-gram data set. Using FCA to correct the clusters, the results showed a

varying level of success for precision and recall values dependent upon the error threshold allowed.

iii

www.manaraa.com

Acknowledgements

“I would like to thank the members of my advisory committee, particularly Dr. Taghva, for their

patience and guidance during my studies. I would especially like to thank my wife, who has

supported me unfailingly during these last two years, and has been a constant companion and

source of inspiration.”

Guymon R. Hall

University of Nevada, Las Vegas

May 2014

iv

www.manaraa.com

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

List of Algorithms ix

Chapter 1 Overview 1

Chapter 2 Information Retrieval 3

2.1 Tokenization . 3

2.1.1 Language Identification . 4

2.1.2 Hyphenation . 4

2.1.3 Punctuation . 4

2.1.4 Compound Words . 4

2.2 Stop Word Removal . 5

Chapter 3 Stemming 6

3.1 Successor Variety . 6

3.2 Affix Removal . 6

3.3 The Porter Stemming Algorithm . 7

Chapter 4 Formal Concept Analysis 10

4.1 The Mathematics of Formal Concepts . 10

4.2 The In-Close Algorithm . 11

4.3 Example . 12

v

www.manaraa.com

4.4 Concept Lattices . 13

4.5 Implications . 15

4.6 Association Rules . 15

Chapter 5 Applying Formal Concept Analysis to Stem Clusters 17

5.1 Data Sources . 17

5.2 Building Clusters . 17

5.2.1 Tokenization . 18

5.2.2 Stop Word Removal . 18

5.2.3 Stemming . 18

5.2.4 Clustering . 18

5.3 Building Formal Contexts . 18

5.3.1 Attribute Selection . 18

5.3.2 Comparison Value . 19

5.4 Conducting the Experiment . 19

5.5 Example . 20

5.6 Results . 22

Chapter 6 Conclusions & Future Considerations 24

6.1 Future Work . 24

6.1.1 Variety Across the Document Collection . 24

6.1.2 Word-Comparison Calculation . 25

6.1.3 Attribute Selection . 25

6.1.4 Implications and Association Rule Mining 25

6.1.5 Formal Concept Analysis in a Distributed Environment 25

Bibliography 26

Vita 28

vi

www.manaraa.com

List of Tables

4.1 A formal context . 10

4.2 Formal concept example . 11

4.3 A selection of animals and their attributes . 12

4.4 Computation of the In-Close algorithm . 13

5.1 Formal context example for a stem cluster . 18

5.2 Example formal context from Cranfield collection . 20

5.3 The formal context after adjusting according to random comparisons 20

5.4 The formal context after normalization . 21

5.5 The formal concept in terms of its binary attributes 21

5.6 Steps of the In-Close algorithm applied to the formal context 21

5.7 Precision and recall results for given error thresholds 22

vii

www.manaraa.com

List of Figures

4.1 Concept Lattice . 14

4.2 Concept Hierarchy . 15

viii

www.manaraa.com

List of Algorithms

1 Porter Stemming Algorithm . 7

2 In-Close Algorithm . 12

ix

www.manaraa.com

Chapter 1

Overview

This thesis is an experiment in the area of information retrieval. Information retrieval deals with the

methods and processes of determining meaningful information from a collection of unstructured

data. As part of the information retrieval process, information retrieval algorithms often stem

words to a common root.

Stemming involves reducing a document term to its root. There are many ways to stem a word:

two common categories of stemmers are affix removal stemmers and successor variety stemmers.

The Porter Stemming Algorithm is a suffix removal stemmer that operates as a rule-based process

on English words [12].

We can think of stemming as a way to cluster related words together according to one common

stem. However, sometimes Porter includes words in a cluster that are un-related. This experiment

attempts to correct these stemming errors through the use of Formal Concept Analysis.

Formal Concept Analysis is the process of formulating formal concepts from a given formal

context. A formal context consists of a set of objects, G, a set of attributes, M, and a binary

relation I that indicates the attributes possessed by each object. A formal concept is formed by

computing the closure of a subset of objects and attributes, such that the subset of objects contains

all objects that possess all of the subset of attributes, and the subset of attributes contains all

attributes that possess all of the subset of objects.

Attribute selection is of critical importance in Formal Concept Analysis; using the Cranfield

document collection [4], this experiment attempted to view attributes as a function of word-

relatedness and crafted a comparison measure between each word in the stemmed cluster using

the Google Web 1T 5-gram data set [5].

An n-gram is a word-phrase of size n; using a node word as a reference, a collocate is a

word that occurs inside the n-gram according to some threshold measure in conjunction with the

reference node. This experiment formed a comparison measure that utilized the list of collocates

1

www.manaraa.com

contained in the Google Web 1T 5-gram data for each word in the cluster ranked by frequency of

occurrence; it then calculated a comparison value for each word-pair in the cluster using a modified

Dice comparison technique [5]. Using Formal Concept Analysis to correct the clusters, the results

showed a varying level of success for precision and recall values dependent upon the error threshold

allowed. The process was successful in correcting stem clusters that contained un-related words;

however, the process also induced error into stem clusters that did not contain un-related words.

This thesis is composed of five chapters. The first chapter is the introduction you just read.

Chapter two is an introduction to information retrieval, and it covers tokenization and stop word

removal. Chapter three focuses on stemming and the Porter stemmer; successor variety stemmers

and affix removal stemmers are introduced, and then a brief analysis of the Porter stemmer is

given. The fourth chapter is an introduction to Formal Concept Analysis. Formal contexts and

formal concepts are defined, an overview of the In-Close Algorithm is provided, and a discussion

of concept lattices follows. The fifth chapter provides the details of the experiment and its results;

experiment methodology, data sources, and precision and recall definition and values are examined.

The sixth chapter covers conclusions and future recommendations.

2

www.manaraa.com

Chapter 2

Information Retrieval

Information retrieval is a burgeoning field of academic study with very practical implications

for everyday life. Formally speaking, information retrieval is defined as “finding material of an

unstructured nature that satisfies an information need from within large collections [11].”

In this context, the term unstructured data refers to data which does not have a formally

defined organization applied to it. For example, a data set that does not conform to the principles

underlying relational databases could be unstructured data. What constitutes a large collection

also bears consideration. Document collections ranging from millions to billions of individual

documents are not uncommon. The largest unstructured document collection is the entire World

Wide Web comprised of all publicly accessible web pages.

With large document collections of unstructured data, a variety of methods and algorithms are

needed to be able to efficiently sift through all the data and retrieve the desired information. These

techniques need to be able to process large amounts of information quickly, allow for flexibility in

matching operations, and provide some type of either ranked or categorized results.

The first step to facilitate these objectives is to build an inverted file. An inverted file is a

dictionary of terms that for each term, contains a list of documents in which the term occurs

[11]. The process of building an inverted file includes tokenization, removal of stop words, and

stemming.

2.1 Tokenization

Tokenization consists of fragmenting a character sequence, usually an entire document, into its

individual tokens. A token is “a sequence of characters in some particular document that are

grouped together as a useful semantic unit for processing [11].”

The easiest way to tokenize a document collection is to simply split the document according to

whitespace characters. This turns out to be a fairly trivial way of tokenizing a document collection;

3

www.manaraa.com

tokenizing according to whitespace can yield inaccurate results and lead to data being included in

the information retrieval process that is not relevant.

2.1.1 Language Identification

There are a number of considerations to take into account when tokenizing a document. The

first is to determine the language of the document collection. This can be manually given, or an

automated language identifier can be used. Issues in the tokenization of a document collection tend

to be language specific, so determining the correct language of a document is critical in applying

any remaining tokenization schemes to the document [11].

2.1.2 Hyphenation

The second issue is to determine what constitutes a correct token. Hyphenation is generally used

in a variety of instances depending on the particular language of the document. In the English

language, hyphenation is used in instances ranging from delineating vowel prefixes in words such as

co-education to joining multiple words together to form complex compound word phrases. Handling

hyphenation in a document can be solved by using classification means or by using rule-based

methods [11].

2.1.3 Punctuation

The way a language is punctuated also affects how a document in that language should be tokenized.

For example, the use of apostrophes in the English language presents some difficulty in handling

the tokenization process: a word such as aren’t should remain as a single token, but a word such as

Harry’s could be tokenized as Harry. Other languages might have a lack of familiar punctuation

rules that would make it difficult to parse a document collection into tokens. The use of machine

learning models contribute greatly to the ability to properly account for punctuation of a document

in a particular language.

2.1.4 Compound Words

Compound words form another consideration to deal with in the tokenization process. Highly lan-

guage dependent, compound words can be identified by means ranging from hyphenation patterns

to a simple concatenation of individual words together to form a single compound word. Prop-

erly tokenizing a compound word can be accomplished using a compound-splitter module, which

examines a compound word for sub-words that occur within the language [11].

4

www.manaraa.com

2.2 Stop Word Removal

The next step in building an inverted file involves removal of stop words. Stop words are high-

frequency terms that occur as a large percentage in common use of a particular language that most

likely do not contribute semantic meaning to the document. Examples of stop words include a,

and, the, etc. Information retrieval systems have tended in recent years to refrain from removing

stop words; text units such as song titles and stanzas of poems could be adversely affected by

removing stop words from the indexed collection [11]. There are two main ways in which to

remove stop words.

The first method is to build a list of stop words that is unique to the document. The method

involves sorting the terms in a document collection according to collection frequency, and then

to take the most frequent terms as representing a list of stop words unique to that document.

Considerations such as Zipf’s Distribution must be taken into account [11].

The second method is to utilize a pre-built list of stop words as determined by general research

into the particular language. This stop list would be less specific to the actual document collection,

but could be more representative of actual stop words in that language.

5

www.manaraa.com

Chapter 3

Stemming

The next step in building an inverted file is to stem the remaining terms of the document collec-

tion. A stemming algorithm is an algorithm “which reduces all words with the same root...to a

common form [10].” Research has shown that some form of stemming as part of the information

retrieval process yields an improvement in the resulting data [9]. Two common types of stemming

algorithms include successor variety algorithms and affix removal algorithms.

3.1 Successor Variety

Successor variety stemming is a stemming algorithm that attempts to find the stem of a word

by taking into consideration the morphological variants of the word and analyzing the prefixes to

determine the longest common prefix. The way in which the longest common prefix is determined

varies by each algorithm, but it can be thought of in terms of graph theory through construction

of a suffix tree [15].

Given such a construct, determining a stem consists of constructing a reasonable path from the

root to a subtree that accounts for all words in question. Nodes that have high outdegree become

candidates for a common stem [15].

3.2 Affix Removal

Affix removal stemming algorithms function by removing suffixes, prefixes, or both from words to

produce a stem. Often, the stem closely approximates the grammatical root of the word [6]. Most

of the time, affix removal stemming algorithms are suffix-strippers: they strip each word of a suffix

by following a pre-determined series of steps and rules.

Lovins describes two approaches to constructing affix removal stemming algorithms. The iter-

ation principle is based on the idea that suffixes are attached to stems following a certain order

6

www.manaraa.com

or method. That is, there are some suffixes that are attached before other suffixes; removing the

suffixes in this case involves iteratively reversing the order of suffix addition [10].

The longest-match principle involves finding the longest-matching affix of a word given a set of

possible affixes. Lovins states, “All possible combinations of affixes are compiled and then ordered

on length. If a match is not found on longer endings, shorter ones are scanned [10].”

3.3 The Porter Stemming Algorithm

The Porter Stemming Algorithm is an affix removal stemmer that functions by removing suffixes

according to a list of rules representing suffix rules of the English language. Porter’s algorithm

has been shown to have several benefits during the information retrieval process. Porter showed

that his algorithm reduced the size of the vocabulary in a given document collection by about

one-third [12]; for the purposes of this experiment, his method is accurate in clustering related

words together about 99.998% of the time. Porter’s algorithm consists of a series of five steps

applied sequentially, each step of which filters the word through a series of grammar rules.

Porter defines a consonant as a letter other than A, E, I, O, or U, and not including Y when Y

is preceded by a consonant. He defines a vowel, v, as a letter that is not a consonant. He defines

the measure, m, as the length of any word or word part [12]. He uses these definitions to formulate

his rules in each of the steps:

Algorithm 1: Porter Stemming Algorithm

Step 1a

[1] SSES → SS // caresses → caress

[2] IES → I // ponies → poni, ties → ti

[3] SS → SS // caress → caress

[4] S → // cats → cat

Step 1b

if m > 0 then
[1] EED → EE // feed → feed, agreed → agree

end
if *v* then

[2] ED → // plastered → plaster, bled → bled

[3] ING → // motoring → motor, sing → sing

end
if Rule 2 or 3 is successful then

[6] AT → ATE // conflat(ed) → conflate

[7] BL → BLE // troubl(ed) → trouble

[8] IZ → IZE // siz(ed) → size

if *d and not (*L or *S or *Z) then [4] → single letter // tann(ed) → tan

if (m = 1 and *o) then [5] → E // fail(ing) → fail, fil(ing) → file

end

7

www.manaraa.com

Step 1c

if *v* then
[1] → I // happy → happi, sky → sky

end
Step 2

if m > 0 then
[1] ATIONAL → ATE // relational → relate

[2] TIONAL → TION // conditional → condition,

[3] ENCI → ENCE // valenci → valence

[4] ANCI → ANCE // hesitanci → hesitance

[5] IZER → IZE // digitizer → digitize

[6] ABLI → ABLE // conformabli → conformable

[7] ALLI → AL // radicalli → radical

[8] ENTLI → ENT // differentli → different

[9] ELI → E // vileli → vile

[10] OUSLI → OUS // analogousli → analogous

[11] IZATION → IZE // vietnamization → vietnamize

[12] ATION → ATE // predication → predicate

[13] ATOR → ATE // operator → operate

[14] ALISM → AL // feudalism → feudal

[15] IVENESS → IVE // decisiveness → decisive

[16] FULNESS → FUL // hopefulness → hopeful

[17] OUSNESS → OUS // callousness → callous

[18] ALITI → AL // formaliti → formal

[19] IVITI → IVE // sensitiviti → sensitive

[20] BILITI → BLE // sensibiliti → sensible

end
Step 3

if m > 0 then
[1] ICATE → IC // triplicate → triplic

[2] ATIVE → // formative → form

[3] ALIZE → AL // formalize → formal

[4] ICITI → IC // electriciti → electric

[5] ICAL → IC // electrical → electric

[6] FUL → // hopeful → hope

[7] NESS → // goodness → good

end
Step 4

if m > 1 then
[1] AL → // revival → reviv

[2] ANCE → // allowance → allow

[3] ENCE → // inference → infer

[4] ER → // airliner → airlin

[5] IC → // gyroscopic → gyroscop

[6] ABLE → // adjustable → adjust

[7] IBLE → // defensible → defens

[8] ANT → // irritant → irrit

[9] EMENT → // replacement → replac

[10] MENT → // adjustment → adjust

[11] ENT → // dependent → depend

if *S or *T then [12] ION → // adoption → adopt

end

8

www.manaraa.com

Step 4 cont’d
if m > 1 then

[13] OU → // homologou → homolog

[14] ISM → // communism → commun

[15] ATE → // activate → activ

[16] ITI → // angulariti → angular

[17] OUS → // homologous → homolog

[18] IVE → // effective → effect

[19] IZE → // bowdlerize → bowdler

end
Step 5a

if m > 1 then
E → // probate → probat, rate → rate

end
if m = 1 and not *o then

E → // cease → ceas

end
Step 5b

if m > 1 and *d and *L then
→ single letter // controll → control, roll → roll

end

It should be apparent that automated stemming algorithms do not always yield the exact

grammatical root of a word, nor are they intended to do so. Another observation is that we can

view words that Porter reduces to the same stem as forming a cluster. An example of this can be

seen using the words include, includes, and including. Each of these words are stemmed by Porter

to the stem includ. We write this occurrence as:

includ ⇒ include, includes, including

Thus, the three words include, includes, and including can be said to form part of a cluster

that is identified by the stem includ.

One issue that arises when viewing stemming in this way is how to deal with situations in

which grammatically unrelated words are given the same stem. An example of this can be seen as

follows:

experi ⇒ experiment, experiments, experience, experiences

In the above cluster, the words experiment and experiments are really unrelated to the words

experience and experiences, yet they each have the same stem experi. This thesis attempts to

address that situation through the use of Formal Concept Analysis.

9

www.manaraa.com

Chapter 4

Formal Concept Analysis

Formal Concept Analysis is a method for constructing formal concepts using operations on a

formal context. Formal Concept Analysis was first written about by Rudolf Wille in the early

1980s [17]. Formal Concept Analysis finds application in a wide range of disciplines: linguistics,

artificial intelligence, and information retrieval are but a few of the disciplines that make use of

formal concept analysis [13].

4.1 The Mathematics of Formal Concepts

A formal context is a triple, (G,M, I), where G is a set of objects, M is a set of attributes, and

I ⊆ G ×M is a binary relation such that gIm indicates that object g ∈ G possesses attribute

m ∈M [17]. We can represent a formal context as a table consisting of n objects and m attributes

such that:

aij =


1 if giImj is true : 0 ≤ i ≤ n, 0 ≤ j ≤ m

0 otherwise

e.g.,

m0 m1 . . . mm

g0 1 1

g1 0 1
...

gn 1 1

Table 4.1: A formal context

10

www.manaraa.com

Let

A′ = {m ∈M : gIm ∀ g ∈ A : A ⊆ G}, and

B′ = {g ∈ G : gIm ∀ m ∈ B : B ⊆M}

A formal concept is a pair, (A,B), such that A = B′ and B = A′. The pair (A,B) form a

relation which is closed. We say that A is the extent of the formal concept, and B is the intent of

the formal concept [17].

A simple illustration using formal concepts can be made with the following example:

m0 m1 m2

g0 1 1 0

g1 0 1 0

g2 1 0 1

Table 4.2: Formal concept example

A simple scan of the table shows that there are four formal concepts:

c0 = {g0, g2}, {m0}

c1 = {g0}, {m0,m1}

c2 = {g2}, {m0,m2}

c3 = {g0, g1}, {m1}

4.2 The In-Close Algorithm

Many algorithms have been developed to compute the closure of sets to determine all formal

concepts within a given formal context. Ganter’s algorithm for computing formal concepts was

published in 1984 [7]. The In-Close algorithm, developed by Andrews in 2009, is a recursive

algorithm that uses incremental closure operations to compute all formal concepts in a formal

context [2].

In-Close is initialized with the set of all objects, and an empty set of attributes. Then, for each

of the attributes, if an object possesses that attribute it is added to the new formal concept. Then,

for the set of objects in the new formal concept, the algorithm recursively computes the closure

of that concept by passing the new set of objects to the next function call. This process repeats

until all attributes are exhausted [2].

Given a formal context with n objects and m attributes, the algorithm runs thusly:

11

www.manaraa.com

Algorithm 2: In-Close Algorithm

for attributes j = y to mm do
initialize a new formal concept, R1;
foreach object i ∈ R0 do

if i has attribute j then
insert i into R1’s extent ;

end

end
if R1.size > 0 then

if R1.size == R0.size then
insert j into R0’s intent ;

end
else

if R1 is canonical then
insert j into R1’s intent ;
InClose(R1, j + 1)

end

end

end

end

The algorithm hinges on the fact that it computes formal concepts according the lexicographical,

or canonical, ordering of the intent of each concept. Thus, for each newly formed extent the

algorithm checks to see if it has already been formed, and if it has, the intent is merely updated

for the already existing extent and no recursion is necessary.

In experimental testing, the algorithm has been shown to run more efficiently than similar

algorithms [2]. It can be seen through analysis of the algorithm that In-Close runs with an

upper-bound complexity of O(m2n+m3) for a context with n objects and m attributes.

4.3 Example

In order to illustrate the operation of the In-Close Algorithm, we can use the following formal

context as an example:

furry tail legs

cat 1 1 1

dog 1 1 1

turtle 0 1 1

fish 0 1 0

Table 4.3: A selection of animals and their attributes

12

www.manaraa.com

Given this formal context, we initialize In-Close with R0 = {cat, dog, turtle, fish} and y = 0:

R y extent intent canonical ?

R1 y = 1 {cat, dog} {furry} yes

R1 y = 2 {cat, dog} {furry, tail} no

R1 y = 3 {cat, dog} {furry, tail, legs} no

R2 y = 2 {cat, dog, turtle, fish} {tail} yes

R3 y = 3 {cat, dog, turtle} {tail, legs} yes

R4 y = 3 {cat, dog, turtle} {tail, legs} no

Table 4.4: Computation of the In-Close algorithm

Thus, for this example, there are three formal concepts:

R1 = {cat, dog}, {furry, tail, legs}

R2 = {cat, dog, turtle, fish}, {tail}

R3 = {cat, dog, turtle}, {tail, legs}

The concepts are computed in order of their canonical appearance according the operation of

the algorithm.

Only those intents that are not previously found via a canonical search constitute a new formal

concept. For instance, R1’s extent is initially computed as {cat, dog}, its intent is {furry}, and it

is initially canonical; however, because both cat and dog have the attributes furry and tail, each

recursive iteration on the next attribute shows that the newly computed intent is not canonical:

thus, R1’s intent is simply added to instead of generating a new formal concept.

Thus, in this example, R4 is not included as a formal concept because it is not canonical.

4.4 Concept Lattices

Another way in which Formal Concept Analysis can be visualized is through the construction

of a concept lattice. A concept lattice consists of a set of formal concepts and the subconcept-

superconcept relation between the concepts [13]. We can use the example above to illustrate a

concept lattice (Figure 4.1).

13

www.manaraa.com

Figure 4.1: Concept Lattice

For a given concept lattice, to determine a formal concept, one needs to find the extent of a

formal concept by tracing all paths which lead “down” from the node to collect all the objects and

the intent by tracing all paths which lead “up” to collect all the attributes [13].

Given two formal concepts, we can define this subconcept-superconcept relation as follows:

(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2 and B1 ⊇ B2 [17]

Thus, for two formal concepts in the example, say

R1 = {cat, dog}, {furry, tail, legs}

R2 = {cat, dog, turtle, fish}, {tail}

We can say that R1 ≤ R2, since

{cat, dog} ⊆ {cat, dog, turtle, fish}, and

{furry, tail, legs} ⊇ {tail},

and we can describe this in terms of the concept lattice as follows:

14

www.manaraa.com

Figure 4.2: Concept Hierarchy

4.5 Implications

Table 4.3, in conjunction with Figure 4.1, show that certain dependency relationships exists be-

tween some of the attributes in the formal context. For example, one can see that every object

that possesses the attribute furry also possess the attributes tail and legs. Similarly, every object

that possesses legs as an attribute also has the attribute tail.

We can write these dependencies as

{furry} → {tail, legs}

{legs} → {tail}

Identifying these dependencies allows the ability to gain efficiency in exploring formal con-

cepts for knowledge generation. If we know that every object that possesses attribute a1 also

possesses attribute a2, then we don’t need to use computation time to calculate formal concepts

with attribute a2 [16].

4.6 Association Rules

Figure 4.2 shows the hierarchical relationship between formal concepts R1, R2, and R3. The

fact that such a relationship exists and can be articulated from the concept lattice has further

application, particularly for formal contexts where large quantities of formal concepts might be

generated.

Attribute exploration benefits greatly from the existence of these relationships. In conjunction

with implications, attribute exploration can be used to prune the lattice using a greatest common

15

www.manaraa.com

subconcept methodology [16]. For example, if we were to view Figure 4.2 as a sublattice of some

larger concept lattice, if the information to be retrieved does not contain the attribute tail, then

we can prune the lattice at R2, including all subconcepts, and therefore save the computational

time required to search through those concepts.

Attribute exploration has been shown to have application in many areas. Aranda-Corral,

Diaz, and Galan-Paez showed that using attribute exploration in sports forecasting resulted in a

significant increase in predictive accuracy [3].

16

www.manaraa.com

Chapter 5

Applying Formal Concept

Analysis to Stem Clusters

This experiment viewed stemming as a way to cluster related words together. For those clusters

in which un-related words are grouped together, it attempted to use Formal Concept Analysis to

refine those un-related terms into distinct clusters.

5.1 Data Sources

This experiment was conducted using the Cranfield document collection. The Cranfield document

collection is a set of 1400 documents that was first used as part of the Cranfield experiments in

the 1960s [4]. The Cranfield experiments are widely held to mark the beginning of the modern

era of automated information retrieval systems [8].

The documents in the Cranfield document collection are largely of a technical nature. Whether

or not the nature of the documents, being highly specialized, had any bearing on experimental

results will be discussed in the section on experimental conclusions.

5.2 Building Clusters

This experiment followed the general flow of information retrieval systems. First, the document

was tokenized. Then, stop words were removed. After stemming each remaining term, clusters

were then formed.

17

www.manaraa.com

5.2.1 Tokenization

The first step of the experiment was to tokenize the document collection. This was done in a fairly

trivial way. Tokens were created using whitespace as a delimiter.

5.2.2 Stop Word Removal

The next step was the removal of stop words. A pre-defined list of common English stop words

was used.

5.2.3 Stemming

After stop word removal, each remaining term was stemmed using the Porter stemmer.

5.2.4 Clustering

During the stemming process, the original word was retained prior to being stemmed. Then clusters

were formed for each stem containing the words that had that stem in common. Clusters that

contained only one term were not retained. Thus, there were a total of 5300 clusters considered in

this experiment.

5.3 Building Formal Contexts

After parsing the document collection into clusters, the next step was to form formal contexts for

each cluster. In each formal context, the objects were defined as each term in the cluster. Attribute

selection was given as a function of word-relatedness for each object-pair in the context. Then, for

each context, the mean, standard deviation, and range for the comparison values was calculated.

5.3.1 Attribute Selection

In determining the attributes for each object in the context, a function, N , was defined that

calculated a comparison value for each word pair. This resulted in an n× n table:

N(wi, w0) N(wi, w1) . . . N(wi, wn)

w0 1.0 0.27 0.19

w1 0.27 1.0
...

wn 0.19 1.0

Table 5.1: Formal context example for a stem cluster

18

www.manaraa.com

5.3.2 Comparison Value

The function, N , that calculated the comparison value for each object-pair in the context was

based on a modified-Dice comparison of collocates. A collocate is a “recurrent and predictable

word combination, which [is] a directly observable property of natural language [5].” Collocates

then are words which commonly occur together with a node word in n-grams.

The collocate data for the experiment was taken from the Google Web 1T N-gram data set,

which contains English n-grams and their observed frequency statistics. For each object in the

context, a list of the top 1000 collocates, ranked by frequency occurrence was retrieved. Then, for

each object-pair, the lists of collocates were compared using a modified-Dice measure of similarity:

2C

|A|+ |B|

where C is the number of collocates in common, and A and B are the list of collocates for each

object.

The key thought for this experiment is that comparisons between words which are related

should have higher comparison values than do comparisons between un-related words. This is

derived from Firth’s definition of collocate: “You shall know a word by the company it keeps [5].”

5.4 Conducting the Experiment

The set of formal contexts were randomly divided into 60% training and 40% testing. In the

training phase, 500 random word comparisons were calculated using the previously methodology

and the mean and standard deviation of these random values was calculated. Two words selected

randomly from the document have a low probability of being related; thus, comparison values that

fall within three standard deviations of the random mean are most likely un-related.

For each of the formal contexts, both correct and over-clustered, in the training set, the ran-

dom comparison mean, µr and standard deviation, σr, was used to calculate a z-score for each

comparison value x in the context. The z-score was calculated as follows:

z =
x− µr

σr

This method of using the z-score as an estimate of probability is similar to the method used

by Acerbi, Lampos, Garnett, and Bentley in their research into books of the 20th century [1].

19

www.manaraa.com

Then, the mean, standard deviation, and range of values was calculated for the entire context

and stored. These statistics formed the basis for use in applying the experiment to the testing

data.

After these statistics were calculated, they were then applied to the testing data. For each of

the formal contexts in the test data, if the formal context’s range was greater than four standard

deviations from the average range of correct clusters, as determined in the training data, the

values of the context were normalized using that context’s mean and standard deviation. The

resulting comparison values yielded a formal context in which positive values existed for related

word comparisons, and negative values for un-related word comparisons.

5.5 Example

To illustrate the process, an example will show how the results were obtained. Consider the

following formal context:

experi experiment experiments experience experiences

experiment 1.0 0.54 0.39 0.36

experiments 0.54 1.0 0.34 0.34

experience 0.39 0.34 1.0 0.59

experiences 0.36 0.34 0.59 1.0

Table 5.2: Example formal context from Cranfield collection

The average for 500 random comparisons was 0.135 and the standard deviation for that average

was 0.098. Given these values, each comparison in the formal context was normalized to its z-score

using the random average and standard deviation:

experi experiment experiments experience experiences

experiment 8.83 4.15 2.62 2.26

experiments 4.15 8.83 2.13 2.07

experience 2.62 2.13 8.83 4.68

experiences 2.26 2.07 4.68 8.83

Table 5.3: The formal context after adjusting according to random comparisons

Training data showed an average range for correct formal contexts of 0.186 with a standard

deviation of 0.99. When we compare each formal context in the testing data using these values, we

20

www.manaraa.com

see that our example formal context has a range of 6.76, which is greater than 4 standard deviations

of the training range mean. Thus, we normalize the formal context, yielding the following values:

experi experiment experiments experience experiences

experiment 2.22 0.15 -0.53 -0.69

experiments 0.15 2.22 -0.75 -0.77

experience -0.53 -0.75 2.22 0.38

experiences -0.69 -0.77 0.38 2.22

Table 5.4: The formal context after normalization

When the In-Close algorithm is applied, we consider non-negative values to be indicative of an

object possessing that attribute, and negative values indicate that an object does not possess that

attribute. Thus, the formal context becomes:

experi experiment experiments experience experiences

experiment 1 1 0 0

experiments 1 1 0 0

experience 0 0 1 1

experiences 0 0 1 1

Table 5.5: The formal concept in terms of its binary attributes

The In-Close algorithm computes the formal concepts for the example formal context as follows.

We initialize the algorithm with

R0 = {experiment, experiments, experience, experiences},

and

y = 0:

R y extent intent canonical ?

R1 y = 1 {experiment, experiments} {experiment} yes

R1 y = 2 {experiment, experiments} {experiment, experiments} no

R2 y = 2 {experiment, experiments} {experiments} no

R3 y = 3 {experience, experiences} {experience} yes

R3 y = 4 {experience, experiences} {experience, experiences} no

Table 5.6: Steps of the In-Close algorithm applied to the formal context

21

www.manaraa.com

Thus, for this example, the process results in two formal concepts, with the extent of each

concept listed as follows:

R1 = {experiment, experiments}

R3 = {experience, experiences}

It is easy to see that each extent represents a corrected refinement of the original cluster that

the Porter Stemming Algorithm yielded. Thus, for this formal context, the process has correctly

separated out un-related words from the original cluster, improving the accuracy of the clustering

process.

5.6 Results

The results for the experiment show a varying level of success based on an allowed error threshold.

Results were calculated using precision and recall values as discussed by Reynaert [14]. Each

formal context could have four possible results: a correct context could remain correct; this is a

true negative (TN). A correct context could have erroneously been changed during the process.

This is a false positive (FP). An over-clustered context could have been correctly adjusted; this is

a true positive (TP). Finally, an over-clustered context could still be incorrect after the process,

yielding a false negative (FN).

Precision and recall were calculated, then, as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN

Given an error threshold as a percentage of induced errors, the results were as follows:

error threshold recall precision

0.00% (0 / 576) 0.00 1.00

0.53% (3 / 567) 0.20 0.40

1.03% (6 / 582) 0.17 0.40

6.22% (35 / 563) 0.14 0.03

8.85% (51 / 576) 0.50 0.06

26.90% (156 / 580) 0.57 0.03

Table 5.7: Precision and recall results for given error thresholds

22

www.manaraa.com

Thus, when no error was allowed, the process failed to correct any of the over-clustered contexts.

When only 0.5% error was allowed, the process corrected a few of the over-clustered contexts,

yielding a recall value of 0.2, but it also induced 3 additional errors in correct formal contexts,

reducing the precision value to 0.4.

23

www.manaraa.com

Chapter 6

Conclusions & Future

Considerations

The results of the data are mixed. On the one hand, the process clearly did a good job of correcting

those formal contexts that contained unrelated words as evidenced by the recall results. On the

other hand, the process also induced errors in already correct formal contexts. Notice that the

more formal contexts we attempted to correct, the more errors were induced in correct contexts.

The key issue hinged on the ability to distinguish between correct clusters and clusters that

needed refinement. The normalization process and resulting computation of formal concepts gen-

erally produced good results when it was applied to clusters that were in fact in need of such

refinement. However, this experiment was unable to find a satisfactory method to distinguish

between correct clusters that should not have had this process applied to them, and incorrect

clusters that contained un-related word pairs. When the normalization process was applied to

correct clusters, the results show the errors that were induced and impacted the precision of the

experiment.

6.1 Future Work

This experiment, while not producing optimal results, gave rise to a number of interesting questions

that could be options for further research in this area.

6.1.1 Variety Across the Document Collection

The first option is to discern how much the document collection influenced the results. In other

words, did the fact that the Cranfield collection is a rather homogeneous collection of engineer-

ing documents skew the results? Thus, this experiment should also be reproduced using other

24

www.manaraa.com

document collections as well, such as the Brown Corpus.

6.1.2 Word-Comparison Calculation

The second area is to research other ways to compute word-comparison values. While using

the modified-Dice coefficient with collocates showed promise in most of the formal contexts, the

distinction was not such that it was useful as an attribute for formal contexts.

6.1.3 Attribute Selection

Related to that notion is the need to research other attributes for the formal contexts. Perhaps

using other properties of words, such as part of speech, language derivation, etc., would yield other

attributes that would provide a more solid footing for correctly distinguishing between already-

correct formal contexts and those that need to be normalized to separate un-related word-pairs.

6.1.4 Implications and Association Rule Mining

This experiment did not take into consideration any attribute exploration methodology such as

logical implications or association rule mining. While these methods are generally used for larger

formal contexts, applying this experiment to a different data set and including such methodology

could prove to generate better results.

6.1.5 Formal Concept Analysis in a Distributed Environment

Finally, in researching the In-Close algorithm for use in computing formal concepts, it seems that

the algorithm is particularly suited for application in a distributed environment. During execution

of the In-Close algorithm, each time a recursive call is made, that can be viewed as a separate

process that can be executed on a separate machine. There has been some research in Formal

Concept Analysis using the MapReduce model, but adapting this algorithm specifically remains a

future consideration.

25

www.manaraa.com

Bibliography

[1] Alberto Acerbi, Vasileios Lampos, Philip Garnett, and R. Alexander Bentley. The expression

of emotions in 20th century books. PLoS ONE, 8(3):e59030, 03 2013.

[2] Simon Andrews. In-close, a fast algorithm for computing formal concepts. In International

Conference on Conceptual Structures (ICCS), Moscow, 2009.

[3] Gonzalo A. Aranda-Corral, Joaqúın Borrego-Dı́az, and Juan Galán Páez. Selecting attributes

for sport forecasting using formal concept analysis. CoRR, abs/1107.5474, 2011.

[4] Cyril W. Cleverdon. The effect of variations in relevance assessments in comparative experi-

mental tests of index languages. Cranfield Library Report No. 3, 1970.

[5] Stefan Evert. Corpora and collocations. In Anke Lüdeling and Merja Kytö, editors, Corpus

Linguistics: An International Handbook, volume 2, pages 1212–1248. Walter de Gruyter, 2008.

[6] William B. Frakes and Christopher J. Fox. Strength and similarity of affix removal stemming

algorithms. Special Interest Group on Information Retrieval, 2003.

[7] Bernhard Ganter. Two basic algorithms in concept analysis. In Lonard Kwuida and Bar

Sertkaya, editors, Formal Concept Analysis, volume 5986 of Lecture Notes in Computer Sci-

ence, pages 312–340. Springer Berlin Heidelberg, 2010.

[8] Charles R. Hildreth. Accounting for users’ inflated assessments of on-line catalogue search

performance and usefulness: an experimental study. Information Research, 2001.

[9] David A. Hull. Stemming algorithms - a case study for detailed evaluation. Journal of the

American Society for Information Science, 1996.

[10] Julie Beth Lovins. Development of a stemming algorithm. Mechanical Translation and Com-

putation Linguistics, 1968.

[11] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. An Introduction to Infor-

mation Retrieval. Cambridge University Press, Cambridge, England, 2009.

[12] Martin F. Porter. An algorithm for suffix stripping. Program, 1980.

[13] Uta Priss. Formal concept analysis in information science. Annual Review of Information

Science and Technology (ASIST), 2006.

[14] Martin Reynaert. Parallel identification of the spelling variants in corpora. In Proceedings of

The Third Workshop on Analytics for Noisy Unstructured Text Data, AND ’09, pages 77–84,

New York, NY, USA, 2009. ACM.

[15] Benno Stein and Martin Potthast. Putting successor variety stemming to work. In Reinhold

Decker and Hans-J. Lenz, editors, Advances in Data Analysis, Studies in Classification, Data

Analysis, and Knowledge Organization, pages 367–374. Springer Berlin Heidelberg, 2007.

26

www.manaraa.com

[16] Gerd Stumme. Concept exploration – a tool for creating and exploring conceptual hierarchies.

In In Proceedings Of The 5th International Conference on Conceptual Structures, pages 318–

331. Springer, 1997.

[17] Rudolf Wille. Restructuring lattice theory: an approach based on hierarchies of concepts. In

I. Rival, editor, Ordered Sets, pages 445–470. Reidel, Dordrecht-Boston, 1982.

27

www.manaraa.com

Vita

Graduate College

University of Nevada, Las Vegas

Guymon R. Hall

Degrees:

Bachelor of Science in Computer Systems Engineering 2001

University of Arkansas Fayetteville

Thesis Title: Using the Web 1T 5-gram Database for Attribute Selection in Formal Concept Anal-

ysis to Correct Overstemmed Clusters

Thesis Examination Committee:

Chairperson, Dr. Kazem Taghva, Ph.D.

Committee Member, Dr. Ajoy Datta, Ph.D.

Committee Member, Dr. Matt Pedersen, Ph.D.

Graduate Faculty Representative, Dr. Emma Regentova, Ph.D.

28

	Using the Web 1T 5-Gram Database for Attribute Selection in Formal Concept Analysis to Correct Overstemmed Clusters
	Repository Citation

	tmp.1406585525.pdf.Mv1Lv

